

Variability Debt in Opportunistic Reuse of Existing Products: Literature analysis and a field study

TD4ViS workshop 13 September 2022

Wesley Assunção ISSE - JKU Austria

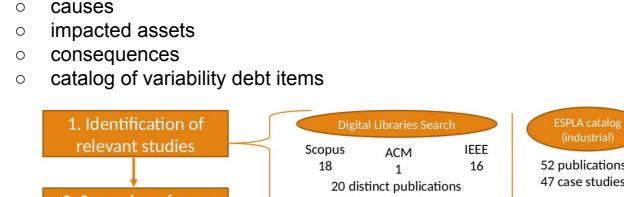
Jabier Martinez Tecnalia Spain

Daniele Wolfart Biopark Education Brazil

Variability management

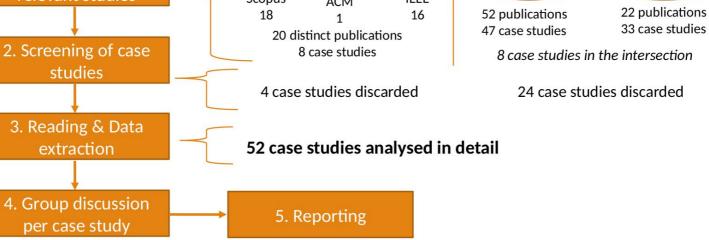
- Numerous design and implementation decisions...
 - a relevant source of **technical debt**
- Variability-intensive systems might accumulate specific types of technical debt
 - requirements
 - architecture
 - source code
 - documentation
 - tests

"Variability debt"


 ... a type of technical debt caused by issues and sub-optimal solutions in the implementation of variability management in software systems

Variability debt

- We started with an obvious case
 - Clone-and-own opportunistic reuse and the technical debt it represents for the maintenance and evolution of a family of systems as a whole.


Companies may choose to implement variability with an approach that would bring short-term benefits, for example, using opportunistic reuse, regardless of medium to long-term technical/architectural disadvantages. The debt of variability leads to maintenance and evolution difficulties to manage families of systems or highly configurable systems.

52 industrial cases of variants created through clone-and-own

Literature review

Results:

Krueger et al.

FSE'20 C&O->p

Literature review: Results

Causes/Drivers	# Case studies
Time pressure	33
Constantly changing scenarios	28
Lack of knowledge on variability management	20
Operational constraints	7

Assets	# Case studies
Source code	44
Requirements	30
Architecture	28
Models	25
Test cases	17
DB schemas	1
Build scripts	1

Consequences	# Case studies
Complex maintenance of independent variants	32
Inability to systematically deal with customization	28
Inability to create complex systems	20
Poor overall internal quality	20
Complex test cycles	15
Creating usability problems	3
Portfolio management problems	3
Repeated roles in similar projects	1

Daniele Wolfart, Wesley K. G. Assunção, and Jabier Martinez. "Variability Debt: Characterization, Causes and Consequences." *XX Brazilian Symposium on Software Quality*. 2021.

7

Literature review: Results

Type Cause/Driver Consequence	Artifacts References
-------------------------------	----------------------

Type of Variability Debt	
Out-of-date or incomplete documentation	Expensive tests
Architectural anti-patterns	Multi-version support
System-level structure quality issues	Old technology in use
Code Duplication	Duplicate documentation
Lack of tests	Poor test of feature interactions

Industrial field study

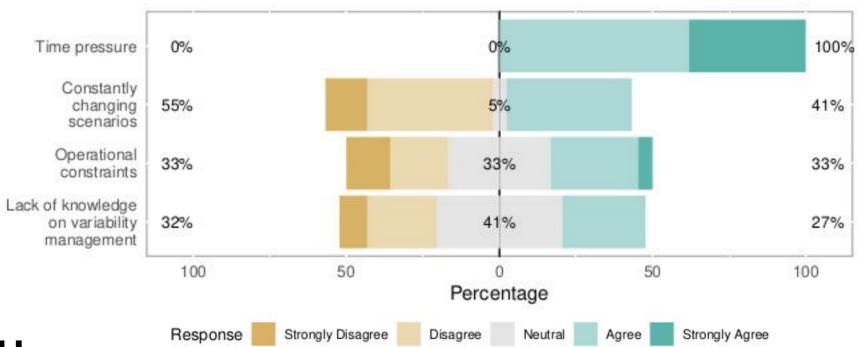
- Variability debt incurred in a real scenario
- Brazilian multinational industry leader in its market segment in Latin America
- Three families of software systems

System	Variant	Year	# F	#CF	#packages	#.java	#methods
SysX	Original Variant1 Variant2	2010 2018 2020	14 10 11	7	$\begin{vmatrix} 4\\ 4\\ 5 \end{vmatrix}$	91 90 91	$1497 \\ 1517 \\ 1495$
SysY	Original Variant1	$\begin{array}{c} 2012\\ 2016 \end{array}$	$\begin{vmatrix} 34 \\ 24 \end{vmatrix}$	24	82 63	$\begin{array}{c} 605 \\ 475 \end{array}$	$6270 \\ 4971$
SysZ	Original Variant1	2018 2018	$\begin{array}{c c} 26\\ 26\end{array}$	24	$\begin{vmatrix} 23 \\ 23 \end{vmatrix}$	$\begin{array}{c} 128 \\ 132 \end{array}$	$2846 \\ 2838$

9

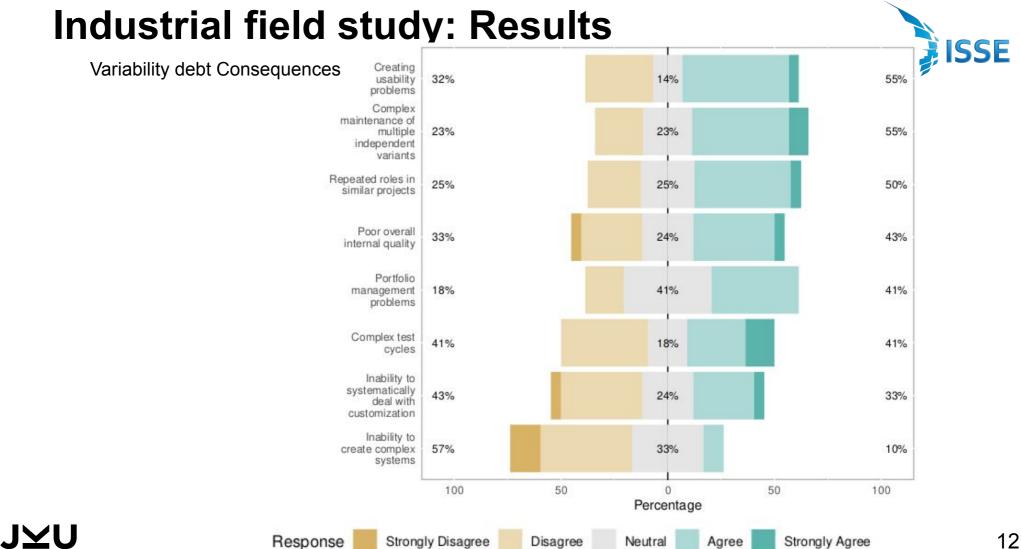
Industrial field study: Results

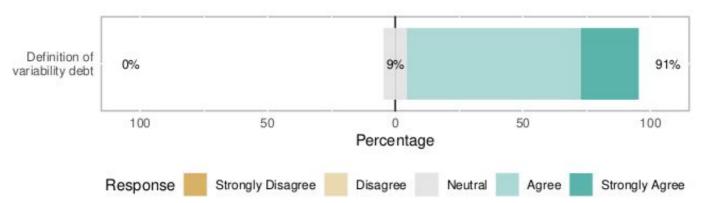
- Evidences of variability debt
 - Variability debt happens in practice
 - Source code is the artifact more copy-pasted for implementing variability in clone-and-own
 - Specifications and Requirements are also replicated for software variants
 - Issues:
 - Replication of business rules
 - Difficult propagation of changes



- Survey with stakeholders (22 participants)
 - Managers do not perceive variability debt
 - Technical practitioners clearly agree with the variability debt existence
 - Practitioners mentioned variability debt described in the literature
 Survey
 - system-level structure quality issues
 - lack of testing
 - multi-version support
- U a duplicate documentation

Survey participants

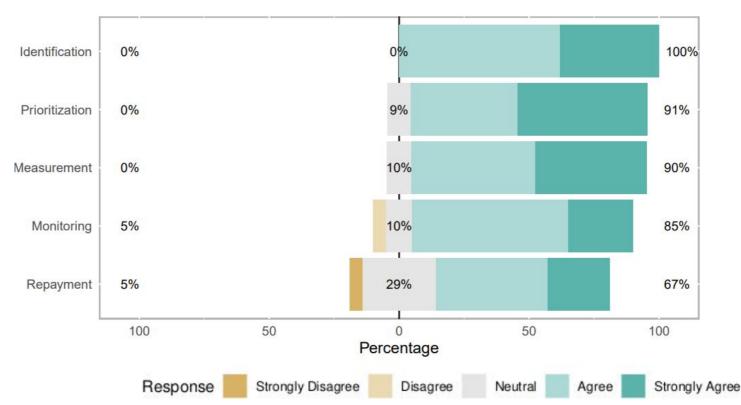

Developer	7
System analyst	4
Test analyst	3
Business manager	3
IT manager	2
Infrastructure analyst	1
Help-desk analyst	1
End user	1


Variability debt causes

J⊼∩

Variability debt definition and concept

P1: "I think that the term technical debt is enough. Technical debt occurs for several reasons, and variability is one dimension among them." **<- Neutral, but recognizing variability as a reason.**


P15: "I agree that initially clone-and-own proves to be simpler, but as time goes by, maintaining these architectures becomes much more complex. I also understand that maintaining highly configurable software is extremely complex and that if it is poorly applied, it can cause even greater maintenance or impair system performance" <- Recognizing that variability debt is not only for clone-and-own, but also when you have a running SPL

Perspectives for activities support

JMU

Conclusion

- Both technical debt and variability management are engineering disciplines, with their own roles, methodologies, and practices that have been widely investigated
 - ... however, there are only few studies that address them together
- The results of a field study show that variability debt management can be beneficial for the company

Future directions

- More studies on Variability debt
- Beyond the clone-and-own reuse
 - Software Product Line approaches
 - Feature-oriented approaches
- Characterize variability debt in comparison with other types of technical debt
 - Defining what are the specifics of managing technical debt in variability-intensive systems
- At methodological level, try to merge technical debt management and variability management